Indian Statistical Institute, Bangalore Centre

B.Math (Hons) II Year, Second Semester Mid-Sem Examination

Optimization

Time: 3 Hours February 27, 2012 Instructor: Pl.Muthuramalingam Maximum mark you can get is: 35

- 1. State and prove Lagrange method for a local minima under constraints.
 [7]
- 2. Find the shortest distance from the point (a_1, a_2, a_3) in \mathbb{R}^3 to the plane whose equation is $b_1x_1+b_2x_2+b_3x_3+b_0=0$, by using Lagrange method. [3]
- 3. Find the point on the line of intersection of the two planes

$$a_1x_1 + a_2x_2 + a_3x_3 + a_0 = 0$$

and

$$b_1 x_1 + b_2 x_2 + b_3 x_3 + b_0 = 0$$

[7]

which is nearest to the origin, by using Lagrange method.

4. Let $A : R_{col}^n \to R_{col}^k$ be linear onto map and $\mathbf{b} \in R_{col}^k$. Here n > k. Let $\mathbb{F} = \{\mathbf{x} \in R_{col}^n : \mathbf{x} \ge 0, A\mathbf{x} = \mathbf{b}\}$ be non empty. Let $A = [\mathbf{a}^1, \mathbf{a}^2, \cdots, \mathbf{a}^n]$ be the column representation of A ie $\mathbf{a}^i \in R_{col}^k$. Assume that $B = \{\mathbf{a}^1, \mathbf{a}^2, \cdots, \mathbf{a}^k\}$ is a basis for R_{col}^k . Let $k + 1 \le l \le n$, and $1 \le j \le k$. Let $B(l, j) = B \cup \{\mathbf{a}^l\} \setminus \{\mathbf{a}^j\}, \mathbf{a}^l = \sum_{1}^k r_i \mathbf{a}^i$. a) Show that B(l, j) is a basis $\langle = \rangle r_j \ne 0$. [2] Let B(l, j) be a basis. Let $\mathbf{x} = (x_1, x_2, \cdots, x_n)^t$ be a B- basis solution and $\mathbf{y} = (y_1, y_2, \cdots, y_n)^t$ be a B(l, j) basis solution. b) Find relations between $x_1, x_2, \cdots, x_n, y_1, \cdots, y_n, r_1, r_2, \cdots, r_k$. [1] c) Show that $x_j = 0 \langle = \rangle \mathbf{x} = \mathbf{y}$ [2] Assume that $\mathbf{x} \ne \mathbf{y}$. Assume also that \mathbf{x} is (further) a feasible solution.

d) Let **y** feasible. Then show that $y_l > 0$ and $x_j > 0$, and $r_j = x_j/y_l$. Let $\theta = \frac{x_j}{r_j} = y_l$. [1]

e) Let **y** be feasible. Then show that $x_i - \theta r_i \ge 0$ for each $i = 1, 2, \dots, k$. [1]

f) Let $r_j > 0$ and $T = \{i : 1 \le i \le k, r_i > 0\}$ put $\delta = \inf\{\frac{x_i}{r_i} : i \in T\}$. If **y** is feasible then show that $\delta = \theta$. [2]

5. Let
$$F = \left\{ \begin{array}{c} (x_1, x_2) : 3x_1 + 4x_2 \ge 12 \\ 2x_1 + x_2 \ge 4 \\ x_1 \ge 0, x_2 \ge 0 \end{array} \right\}$$

a) Let $\mathbf{y} = (a, b)$ where a < 0 or b < 0. Show that \mathbf{y} is not an extremal direction for F [1]

Hint: Plotting F on a sheet of paper may be helpful.

b) Show that each (a_0, b_0) with $a_0 \ge 0, b_0 \ge 0, a_0^2 + b_0^2 \ne 0$ is an extremal direction for F. [1]

c) Find two linearly independent vectors $\mathbf{y}_1, \mathbf{y}_2$ such that for each \mathbf{d} an extremal direction for F, there exist $\lambda_1, \lambda_2 \geq 0$ such that $\mathbf{d} = \lambda_1 \mathbf{y}_1 + \lambda_2 \mathbf{y}_2$. [1]

d) Convert the inequalities into standard form

$$\{\mathbf{x} \ge \mathbf{0}, A\mathbf{x} = \mathbf{b}, \mathbf{x} \in R_{col}^4\}.$$

Find all extremal directions for the set $\mathbb{F} = \{\mathbf{x} \ge \mathbf{0}, A\mathbf{x} = \mathbf{b}, \mathbf{x} \in R_{col}^4\}.$ [1]

e) Find two linearly independent vectors $\mathbf{z}_1, \mathbf{z}_2$ such that for each extremal direction \mathbf{k} for \mathbb{F} we can find $\lambda_1, \lambda_2 \geq 0$ such that $\mathbf{k} = \lambda_1 \mathbf{z}_1 + \lambda_2 \mathbf{z}_2$. [1]

6. Convert the problem:

a)
$$3x_1 + 4x_2 \le 12$$
,
 $2x_1 + x_2 \le 6$,
 $x_1 \ge 0, x_2 \ge 0$.
into standard form [1]
b) For the standard form find all the basic solutions. [6]
c) For the standard form find all the basic feasible solutions. [1]